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Abstract

The use of the classification and regression tree (CART) methodology was studied in a quantitative structure–retention
relationship (QSRR) context on a data set consisting of the retentions of 83 structurally diverse drugs on a Unisphere PBD
column, using isocratic elutions at pH 11.7. The response (dependent variable) in the tree models consisted of the predicted
retention factor (logk ) of the solutes, while a set of 266 molecular descriptors was used as explanatory variables in the treew

building. Molecular descriptors related to the hydrophobicity (logP and Hy) and the size (TPC) of the molecules were
selected out of these 266 descriptors in order to describe and predict retention. Besides the above mentioned, CART was also
able to select hydrogen-bonding and molecular complexity descriptors. Since these variables are expected from QSRR
knowledge, it demonstrates the potential of CART as a methodology to understand retention in chromatographic systems.
The potential of CART to predict retention and thus occasionally to select an appropriate system for a given mixture was
also evaluated. Reasonably good prediction, i.e. only 9% serious misclassification, was observed. Moreover, some of the
misclassifications probably are inherent to the data set applied.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction pharmaceutical analysis. Its ability to analyse a wide
polarity range of acidic, basic and neutral com-

High-performance liquid chromatography (HPLC) pounds, and its high separative capabilities combined
is the most widely used separation technique in with automation, make HPLC the most efficient

technique for the analytical characterisation of the
continuously growing number of samples, produced*Corresponding author. Tel.:132-2-477-4723; fax:132-2-
at the different stages of drug development [1].477-4735.
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chemistry and high-throughput techniques, rapid In this study, another approach, classification and
HPLC method development is clearly needed in the regression tree (CART) analysis was investigated.
pharmaceutical industry. The selection of appropriate CART is a statistical method that explains the
starting conditions for method development, among variation of a response variable using a set of
which the selection of the stationary phase, is then explanatory variables, so-called predictors [14]. The
crucial to reduce the time dedicated to an analysis. A method is based on a recursive binary splitting of the
wide variety of chromatographic stationary phases, data into mutually exclusive subgroups containing
providing significantly different retention and selec- objects with similar properties. CART is extensively
tivity, are commercially available and principally used for modeling and classification in several areas,
offer the opportunity to perform any separation. such as medical diagnosis and prognosis [14–16],
However, the retention mechanisms are still not and ecology [17]. However, its use in analytical
exactly known [2,3] and many stationary phases chemistry is very limited. A very interesting advan-
present similar characteristics which makes the selec- tage of CART is the possibility to deal with large
tion of a proper stationary phase difficult and prob- numbers of both categorical and numerical variables.
lem dependent. The choice of the stationary phase is Another advantage is that no assumption about the
still often based on empirical knowledge of the underlying distribution of the predictor variables is
analyst and/or on an experimental trial-and-error required (even categorical variables can be used).
approach on a selected set of stationary phases. The Eventually, CART provides a graphical representa-
selection is then time-consuming and cost demand- tion, which makes the interpretation of the results
ing. easy. Therefore, we felt that CART could be a very

Consequently, the development of mathematical interesting method to select and relate molecular
models to predict the retention of new molecules is descriptors with the chromatographic retention of the
of particular interest for the pharmaceutical industry. molecules.
Several approaches have been investigated in HPLC, The goal of this study was to explore the possi-
among which quantitative structure–retention rela- bilities of CART to find relationships between
tionships (QSRRs) are the most popular [2]. In chromatographic retention of solutes on a given
QSRR analysis one models the retention (e.g. the chromatographic system and the selected molecular
retention factors,k) of solutes measured on a given descriptors. Since, for a given molecule we are
stationary phase under specific conditions, as a mainly interested in the prediction of a suitable
function of structural descriptors of the solutes [4]. chromatographic system, we focused on the ability
The models are usually constructed using multiple of the methodology to distinguish between classes
linear regression (MLR) methods [5,6]. However, with respectively low, intermediate and high re-
this approach can only be used when the number of tention on the considered system, rather than on the
objects (i.e. molecules) is larger than the number of exact retention prediction of the compounds. A
variables (i.e. molecular descriptors) and the vari- physicochemical explanation of the selected descrip-
ables are not highly correlated. Since hundreds of tors is also given.
molecular descriptors have been developed [7],
either feature (i.e. variable) selection methods [8]
have to be applied prior to MLR or other modeling 2 . Theory
methods such as neural networks (NNs) [9,10],
principal component regression (PCR) [11] or partial 2 .1. Classification and regression trees
least squares (PLS) [12] have to be used. Since these
latter methods use combinations of the original In 1984, Breiman et al. [14] introduced a meth-
variables (latent variables), the understanding of the odology for classification and modeling, called
chromatographic retention mechanisms becomes al- ‘‘classification and regression tree analysis’’. The
most impossible. Therefore, MLR with feature selec- goal of this statistical method is to explain the
tion is usually the preferred approach [8]. Genetic variation of a single dependent variable, the response
algorithms have been used for feature selection in variable, using a set of independent predictors,
QSRR studies [13]. referred to as explanatory variables, via a binary
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partitioning procedure. Both the response and the this, CART looks at all possible splits for all
explanatory variables can be either categorical or variables included in the analysis. The resulting
numerical. A classification tree, equivalent to dis- splits are compared and eventually, the best split is
criminant analysis [18], is grown when the response chosen by evaluation of the impurity of the formed
variable is categorical while a regression tree is nodes, according to statistical criteria. This procedure
obtained for a numerical response variable [14]. is repeated for each consecutive split made in the

CART works by splitting the data into mutually tree. The splitting procedure is continued until no
exclusive subgroups, called nodes, within which the further split can be performed, i.e. all child nodes are
objects have similar values for the response variable. homogeneous, or contain one or a user-defined
The process starts from the root or parent node, minimal number of observations. The tree thus
which contains all objects of the data set. CART uses obtained is called the maximal tree and the terminal
a repeated binary splitting procedure, which means nodes, the so-called leaves, represent the final groups
that the parent node is split in two nodes, called child formed by the tree. This maximal tree will usually
nodes. The process is repeated by treating each child contain too many leaves and will overfit the learning
node as a parent node (Fig. 1). Each split is defined data set, which will cause poor predictive abilities
by a simple rule, usually based on a single explanat- for new samples [14]. Therefore, the selection of an
ory variable. For numerical explanatory variables, a optimal tree with a good compromise between model
splitting value (cut point) is selected to form two fit and predictive properties is required. Thus, in
groups, which contain objects with values smaller general, CART analysis consists of three steps: (1)
and larger, respectively, than the selected cut point. the maximal-tree building, (2) the tree ‘‘pruning’’,
For categorical variables, a split is defined by which consists in the cutting-off of nodes to generate
relating one or more levels of the variable to a a sequence of simpler (i.e. smaller) trees, (3) the
specific node. Trees are grown by selecting the splits optimal-tree selection.
in such a way that the so-called homogeneity and the
impurity of the response variable within each node is 2 .1.1. Maximal-tree building
maximized and minimized, respectively. To achieve The growing of the tree starts at the root node,

Fig. 1. Structure of a classification and regression tree.



264 R. Put et al. / J. Chromatogr. A 988 (2003) 261–276

containing all observations. CART is then looking with other modeling techniques, one is looking for
for the best possible variable, so-called splitter, to the best compromise between model fit and predic-
divide the root node into two child nodes. To achieve tion properties [19].
this, the program looks at all possible variables, as The selection of the optimal tree is done by a tree
well as at all possible values of the variable that can pruning procedure [14]. This procedure generates a
be used to split the data. The best splitter is defined sequence of smaller trees, which are obtained by
as the variable (and associated splitting value) that removing successively branches of the maximal tree.
will minimize the impurity,i, of the two child nodes. The different subtrees are then compared to de-
The goodness of a split is then defined as the termine the optimal one.
impurity decrease between the parent node and its Since several trees of the same size can be
children: generated from the maximal tree, a procedure to

determine the best one, is defined. Both accuracy, by
Di(s, t )5 i (t )2 p i(t )2 p i(t ) (1)P P P L L R R some error measure, and complexity of the tree are
where s is a candidate split,p and p are the considered. This is done by a cost-complexity mea-L R

fractions of observations of the parent nodet that go sure,R (T ), defined for each subtree,T, as:p a

into the child nodest and t , respectively. The bestL R ˜R (T )5R(T )1a uT u (5)splitter is the one that will maximizeDi(s, t ). ap

Different criteria to measure the impurity of a
with R(T ) the average within-node sum of squares,node have been proposed [14,17]. For regression ˜uT u the tree complexity, which is equal to the totaltrees, the total sum of squares of the response values
number of nodes of the subtree, anda the complexi-about the mean of the node is the most popular
ty parameter, which is a penalty for each additionalmeasure of impurity [14]:
terminal node [14]. During the pruning procedure the

2 value ofa will gradually be increased from 0 to 1.¯i(t)5O y 2 y(t) (2)s dn
x [tn For each value ofa, one can find a subtree,T(a),

that minimizesR (T ). The largera becomes, theawhere i(t) is the impurity of nodet; y , is then ˜smaller uT u should be to minimizeR (T ). Thus, byaresponse value of observationx belonging to nodet;n gradually increasinga, one generates a sequence ofȳ(t), the mean of all observations in nodet. Absolute
pruned subtrees starting from the largest tree.deviations about the node medians is another criter-

ion which is used to build (robust) trees [14].
Once a split is made, a label or class is assigned to 2 .1.3. Optimal tree selection

the child nodes. For regression trees, this is simply Eventually, the optimal tree is selected from the
the mean within the node. For classification trees, the generated sequence of subtrees by evaluating the
simplest rule is to assign the largest representation aspredictive error of the trees. The predictive error is
the label (class) of a node. A label or class is often estimated using cross-validation, especially for
assigned to every node of the tree since it is small data sets [14]. In cross-validation, some sam-
unknown which nodes finally will be kept in the ples are randomly drawn from the data set, to test the
optimal tree (see Sections 2.1.2 and 2.1.3). tree, which is built with the rest of the data [12]. In

10-fold cross-validation, the original data set is
2 .1.2. Tree pruning divided into 10 equal parts (test sets), each con-

The resulting maximal trees are usually oversized taining a similar distribution for the response vari-
and describe the training set perfectly. This is what able. A tree is then built using 90% of the observa-
in modeling is called overfitting [11,19]. Such trees tions (learning set), while the remaining 10% (test
often are difficult to interpret and their predictive set) are used to test the tree. This step is repeated 10
ability for new observations is generally poor since times using each time a different test set and the
they tend to fit also the noise in the data. The remaining observations as the learning set. The
selection of a smaller tree, derived from the maximal optimal tree is the one having the minimal cross-
one, is then necessary for predictive purposes. As validation error (most accurate tree). In practice, the
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optimal tree is chosen as the simplest tree with a namely whether it is theoretical or experimental. A
predictive error estimate within one standard error of further classification of theoretical molecular descrip-
the minimum. In this way, the chosen tree is the tors is based on the dimensionality of the molecular
simplest with an error estimate comparable to the representation [7]. A first class contains so-called
one of the most accurate tree. zero-dimensional (0D) descriptors, which are derived

from the chemical formula. The information consid-
2 .1.4. Variable ranking: selection of primary and ered here is, for instance, the number and type of
surrogate splits atoms, the molecular mass, any function of atomic

It is sometimes observed that a given variablex properties (e.g. sum of atomic van der Waals vol-2

does not occur in the final tree structure, while it umes). A substructure list representation of a mole-
prominently does when another tree, which is almost cule can be considered as a one-dimensional (1D)
as accurate as the first one, is grown after removing a molecular representation and consists of a list of
so-called masking variablex from the data set. molecular fragments (e.g. functional groups, sub-1

However, the variablesx and x do not necessarily stituents, etc.). The derived molecular descriptors are1 2

cause a similar split in the data set; they both cause a called 1D-descriptors (e.g. count descriptors of func-
considerable decrease in impurity. Such variables are tional groups, rings and bonds).
called primary variables and the splits they cause are A molecular graph contains topological or two-
the so-called primary splits. The importance of the dimensional (2D) information. It describes how the
explanatory variables to introduce a split in the tree atoms are bonded in a molecule, both the type of
is detected by the variable ranking method in CART. bonding and the interaction of particular atoms. The
The most relevant properties to describe the response derived molecular properties are called 2D descrip-
variable can then be identified, so that CART can be tors (e.g. total path count; see Section 4.1). Another
used for feature selection [14]. group of theoretical descriptors consists of three-

On the other hand, so-called surrogate splits are dimensional (3D)-descriptors, which are calculated
defined as splits causing a similar distribution of the starting from a geometrical or 3D representation of a
objects in the groups obtained after splitting. The molecule. Finally the descriptors, which are derived
variables responsible for these similar distributions from a stereo-electronic or lattice representation, are
are called surrogate variables. When for an object the called four-dimensional (4D) descriptors.
value of the splitting variable is missing, the value of In this study 0D, 1D, 2D molecular descriptors and
a surrogate variable is then used to decide to which four experimental descriptors (i.e. logP, the unsatu-
node the object is awarded. ration index, the hydrophilic factor Hy (see Section

4.1) and the aromatic ratio) were used.
2 .2. Molecular descriptors

Molecular descriptors can be defined as the final 3 . Experimental
result of a logical and mathematical procedure which
transforms chemical information encoded within a The chromatographic data used were obtained
symbolic representation of a molecule into a useful from the paper by Nasal et al. [20] and consisted of
number (theoretical descriptor), or as the result of the logarithms of the retention factors (logk ) for 83w

some standardized experiment (experimental descrip- basic drugs. They belonged to the following pharma-
tor) [7]. The term ‘‘useful’’ means that the resulting cological classes: psychotropic drugs, drugs acting
number can contribute to a better understanding of througha-adrenoreceptors (both agonists and an-
molecular properties and/or can be used in a model tagonists),b-adrenolytics, antagonists of histamine
to predict properties of molecules. H receptors, histamine H receptor antagonists and1 2

In the literature over 6000 descriptors are defined, inactive phenothiazine derivatives. The data were
and the number still grows [7]. Several ways to obtained on Unisphere PBD, a polybutadiene-coated
classify molecular descriptors into groups exist. The alumina column at pH 11.7 using isocratic elutions
simplest one is based on the nature of the descriptor, [20]. The dimensions of the column were 10034.6
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mm I.D., with a particle size of 8mm. Since the data were used as response variable and the selected
solutes show a large diversity in molecular structure, descriptors as explanatory variables. Additional data
it is not possible to measure the retentions for all plots were made using Matlab 5.3.1 (Mathworks,
molecules isocratically on the same chromatographic Natick, MA, USA).
system. Therefore, the proportions (%, v/v) of
methanol–aqueous buffer used range from 75:25 to
0:100 [20]. To compare the retentions measured, a 4 . Results and discussion
hypothetical retention factor, logk , is then required.w

The log k values measured for individual solutes 4 .1. Building of the classification and regression
were regressed against the volume fraction of or- trees
ganic modifier in the eluent and the obtained line
was extrapolated to a hypothetical capacity factor Trees were grown using the retention data (logk )w

corresponding to 0% of organic modifier (100% of all 83 molecules on a Unisphere PBD column at
buffer). This approach is, for instance, currently pH 11.7. The chromatographic data investigated
applied when one tries to predict logP values from were chosen because the retention of a large diversi-
chromatographic retention [21]. Therefore, it was ty of chemical structures was measured. Since the
also applied here in a more general QSRR context. response variable is continuous, the resulting trees
More details of the chromatographic parameters can are regression trees. The explanatory variables used
be found in Ref. [20]. A list of the molecules and belong to several classes of molecular descriptors as
their log k and logP values is shown in Table 1. mentioned in Section 3. A total of 266 descriptorsw

The logP values of the substances were calculated were used as explanatory variables.
using the on-line interactive LOGKOW program of The regression trees were grown using Eq. (2) as
the Environmental Science Center of Syracuse Re- impurity measure. Ten-fold cross-validation was
search, Syracuse, NY, USA [22,23]. used to define the optimal tree. The latter was

For all molecules the geometrical structure was selected from the maximal tree, which was pruned
optimized using Hyperchem 6.03 Professional soft- back. The plot of the maximal regression tree is
ware (Hypercube, Gainesville, FL, USA). Geometry shown in Fig. 2. For this maximal tree the minimal
optimization was obtained by the Molecular Mech- number of objects per node, i.e. two in our study,
anics Force Field method (MM1) using the Polak- was defined equal to log (n /2) with n the total

`Ribiere conjugate gradient algorithm with an RMS number of objects [35]. For the abbreviations used
˚gradient of 0.05 kcal /(A mol) as stopping criterion for the different molecular descriptors, we refer to

(1 cal54.184 J). The Cartesian coordinate matrices Ref. [24].
of the positions of the atoms in the molecule, which Fig. 3 shows a plot of the prediction error,
result from this geometrical representation, were calculated as the root mean squared error of cross
used for the calculation of the molecular descriptors validation (RMSECV), as a function of the size of
using the Dragon 1.1 software [24]. Out of the 853 the tree. A horizontal line indicates the selection
molecular descriptors, which potentially can be limit, situated one standard error above the minimal
calculated with this program, the 0D, 1D, 2D ones RMSECV. Applying this selection limit suggests a
beside some experimental descriptors were selected. tree size of four leaves as optimal. Fig. 4 shows both
The following groups of descriptors, as defined in the tree with the minimal RMSECV (Fig. 4a) and the
Dragon 1.1, were calculated: 56 constitutional de- selected optimal tree (Fig. 4b). The nodes are
scriptors [7], 69 topological descriptors [25–29], 20 numbered according to the order of the tree growing.
molecular walk counts [30], 21 Galvez topological The splitting rules, the average response value and
charge indices [31], 96 2D autocorrelations [32–34] the numbers of objects of the leaves are indicated
and three empirical descriptors [7]. similarly as in Fig. 2. Additionally, histograms are

Regression trees were grown using the TreePlus plotted that represent the distribution of the response
add-on module [35] in the S-Plus 2000 environment for the objects within each node. Each bar covers a
(Mathsoft, Cambridge, MA, USA). The retention specific range of logk values, with increasingw
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Table 1
The extrapolated retention data logk , the logP values and the predicted retention classes (explanation: see Section 4.4) of the 83 drugsw

studied [20,23]

No. Drug Logk Log P Prediction classw

1 Acebutolol 0.351 1.19 Very low or low
2 Acetopromazine 2.934 4.24 High or very high
3 2-Acetylphenothiazine 3.065 3.51 High or very high

a4 Alprenolol 1.720 2.81 Intermediate
Intermediate or high

5 Antazoline 1.888 3.38 Intermediate or high
6 Astemizole 3.508 6.43 High or very high
7 Atenolol 21.048 20.03 Very low or low
8 Betaxolol 1.772 2.98 Intermediate or high
9 Bisoprolol 0.094 1.84 Very low or low

10 Brimonidine 0.178 21.30 Very low or low
11 Bupranolol 2.055 3.07 Intermediate or high
12 Carbamazepine 0.926 2.25 Very low or low

a13 Carteolol 0.228 1.42 Very low
Very low or low

a14 Celiprolol 0.232 1.93 Very low or low
15 Chloropyramine 2.767 3.37 Intermediate or high
16 Chlorpheniramine (1) 1.899 3.82 Intermediate

a17 Chlorpheniramine (1 /2) 2.043 3.82 Intermediate or high
18 Chlorpromazine 4.076 5.20 High or very high
19 Chlorprothixene 4.235 5.14 High or very high
20 Cicloprolol 0.573 2.10 Very low or low
21 Cimetidine 0.724 0.57 Very low or low

a22 Cinnarizine 4.665 5.44 High or very high
Intermediate or high

23 Cirazoline 1.583 3.22 Intermediate or high
24 Clomipramine 3.910 5.65 High or very high
25 Clonidine 1.283 1.89 Very low or low
26 Desipramine 2.888 4.80 High or very high

a27 Detomidine 1.627 3.29 Intermediate
Intermediate or high

28 Dilevalol 21.258 2.00 Very low or low
29 Dimethindene 2.240 4.98 Very high
30 Diphenhydramine 2.112 3.11 Intermediate or high
31 Doxazosin 2.823 2.09 Very low or low
32 Esmolol 0.916 2.00 Very low or low
33 Ethopropazine 4.181 5.47 High or very high
34 Famotidine 0.193 20.65 Low
35 Fluphenazine 3.352 4.13 High
36 Imipramine 3.020 5.01 Intermediate or high
37 Indoramin 2.299 3.60 High or very high
38 Isothipendyl 2.535 3.94 High or very high
39 Ketotifen 1.950 3.64 High or very high
40 Lofexidine 1.410 3.58 High or very high
41 Medetomidine 2.516 4.50 Intermediate or high
42 Mepyramine 2.049 2.81 Intermediate or high
43 2-Methoxyphenothiazine 3.400 3.12 High or very high
44 Metiamide 0.044 0.52 Low
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Table 1. Continued

No. Drug Logk Log P Prediction classw

45 Metoprolol 20.553 1.69 Low
46 Moxonidine 21.125 0.24 Very low or low
47 Nadolol 20.637 1.17 Low or intermediate
48 Naphazoline 1.476 3.52 High
49 Nifenalol 0.075 0.99 Low or intermediate
50 Nizatidine 20.569 20.67 Very low or low
51 Oxprenolol 1.218 1.83 Low or intermediate
52 Oxymetazoline 1.274 4.87 Intermediate or high

a53 Perphenazine 3.070 3.82 High or very high
54 Pheniramine 1.275 3.17 High or very high

a55 Phenothiazine 3.375 3.82 High or very high
Intermediate or high

56 Phentolamine 20.834 3.36 Intermediate or high
57 Pindolol 0.331 1.48 Very low or low
58 Pizotifen 3.465 5.51 Intermediate or high
59 Practolol 20.627 0.53 Very low or low

a60 Prazosin 1.172 1.28 Very low or low
Low or intermediate

a61 Prochlorperazine 3.523 4.79 Very high
High or very high

62 Promazine 3.294 4.56 High or very high
a63 Promethazine 3.216 4.487 Very high

High or very high
64 Propiomazine 3.497 4.66 High or very high

a65 Propranolol 2.038 2.60 Intermediate
Intermediate or high

66 Ranitidine 1.779 0.29 Very low or low
a67 Roxatidine acetate 1.154 2.21 Low

Very low or low
68 Sotalol 21.602 0.37 Very low
69 Terazosin 0.167 1.47 Low
70 Tetryzoline 0.680 3.69 High or very high
71 Thioridazine 4.655 6.45 High or very high
72 Thiothixene-cis 2.770 3.14 High or very high

a73 Tiamenidine 20.231 0.79 Low
74 Timolol 0.171 1.75 Very low or low
75 Tolazoline 20.063 2.34 Intermediate

Very low or low
76 Trifluoperazine 3.632 5.11 Very high
77 2-Trifluoromethylphenothiazine 4.804 4.79 Very low or low
78 Triflupromazine 4.117 5.52 Very high

a79 Trimeprazine 3.508 4.98 High or very high
80 Tripelennamine 1.807 2.73 Intermediate or high

a81 Triprolidine 2.618 3.70 Intermediate or high
82 Tymazoline 2.012 3.88 Intermediate or high
83 Xylometazoline 2.385 5.35 Intermediate or high

a The molecule was selected twice for the test set.

retention towards the right part of the plots. This For the optimal subtree with four terminal nodes,
allows to see clearly the partition in retention classes three molecular descriptors were selected to describe
(i.e. low retention for nodes 6 and 7, medium for the retention data. The molecular descriptor, which is
node 4 and long retention for nodes 5, 8 and 9). selected first is the ‘‘hydrophobicity parameter (log
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Fig. 2. Maximal regression tree, grown for the logk values of 83 drugs on a Unisphere PBD column at pH 11.7 using 266 molecularw

descriptors as explanatory variables. For each leaf the mean logk value is given, as well as the number of objects (molecules), betweenw

brackets. For each split the criterion that defines the left part is indicated.

P)’’. For the tree with the minimal RMSECV this RPLC, because retention is based on a partition
mechanism, in which hydrophobic interactions aredescriptor is even used twice: it defines both the first
the most important [1]. The selection of logP out ofand the last split. The other selected molecular
more than 250 molecular descriptors indicates thedescriptors are the ‘‘hydrophilic factor’’ (Hy) [36]
ability of CART to relate chromatographic retentionand the ‘‘total path count’’ (TPC) [37].
with molecular descriptors and its use for featureThe use of logP to describe retention data can be
selection in QSRR.expected. In the literature, logP indeed is often used

The hydrophilic factor (Hy) is directly, but in ain quantitative structure–retention relationships for
negative way, correlated to logP and thus its
selection also is not surprising. Hy is defined by
Todeschini et al. [36] as an empirical index related to
the hydrophilicity of compounds. It is based on count
descriptors and can be calculated as:

Hy5
]]2(11N ) log (11N )1N ?[(11A) log (1/A)]1 N /AHy 2 Hy C 2 Hyœ

]]]]]]]]]]]]]]
log (11A)2

(9)

where N represents the number of hydrophilicHy

groups (–OH, –SH, –NH),N the number of carbonCFig. 3. RMSECV versus tree size. The tree size is defined as the
atoms andA the total number of atoms, hydrogensnumber of leaves in a given tree. The dotted line represents the

selection limit. excluded.
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4 .2. Primary and surrogate splits

Log P, TPC and Hy define both the tree with the
minimal RMSECV (Fig. 4a) and the optimal tree
(Fig. 4b). However, these are not the only descriptors
selected by CART. For each node splitting, CART
provides a list of descriptors giving the most im-
portant improvement in node impurity. The corre-
sponding splits are called primary splits and the one
improving impurity most, is used to cause the
effective split. The primary splits for the nodes of the
tree with the minimal RMSECV (Fig. 4a) are listed
in Table 2. As mentioned above, hydrophobic /hy-
drophilic properties (logP/Hy) are the most im-
portant for the first split (node 1). H-bonding prop-
erties (nHD) [39], molecular shape (PW5) [40] and
molecular complexity (PCR, TPC) [7,37] also are
variables causing a considerable decrease in the
impurity. Notice that the molecular descriptors used
to define all splits in the tree (i.e. logP, Hy and
TPC) are already selected as primary splits of the
first node. For the second node a more general index
of spatial autocorrelation regarding the atomic mass-
es (GATS5m) [34] is selected as primary variable,

Fig. 4. Pruned regression trees, (a) with minimal RMSECV and besides the hydrophilic properties (Hy). Molecular
(b) optimal tree. Data used: see text. For each leaf the mean logkw complexity is represented by TPCM, PCR and by thevalue for its elements and the number of molecules is represented.

average valence connectivity indices X0Av andThe distribution of log k for each node is illustrated in aw

histogram. The criterion defining each split is also printed. X1Av [41,42]. The third node has besides TPC,
nR06 containing steric properties information [14],

The selection of the total path count (TPC) on the TPCM, PCD and the molecular walk counts
other hand was not a priori foreseen. A molecular (MWC05 and MWC06) [43], related to molecular

mpath count P is defined as the total number of paths size and molecular branching, as primary variables.
of length m in the graph [38]. The TPC is a Finally, the last split (node 5) selects analogous
descriptor obtained from the H-depleted molecular descriptors as before (logP, ATS8m, GATS2m and
graph of a molecule and is calculated by summing all ATS5m) and additionally the topological charge

mmolecular path countsP with m 5 0, 1 . . . ,L andL indices GGI9 and JGI9 [31,44], which were pro-
the length of the longest path in the graph [37]: posed to evaluate the global charge transfer in the

molecule.L
m From the above, it can be observed that primaryTPC5O P (10)

m50 variables do not necessarily describe the same prop-
erties. This is not surprising since their selection isIn general, the TPC is considered as a quantitative
only based on the improvement of the impuritymeasure of molecular complexity [7]. Because of the
criterion and they do not necessarily lead to afact that the TPC and the volume of the molecule are
comparable distribution in the child nodes.correlated, the TPC is related to the size of the

After removing log P from the data set, Hy ismolecule. This interpretation explains the selection
selected for the first split, as might be expected fromof the TPC in the tree, since it is known that

hydrophobicity and molecular size are two main the list of primary splits of the first node. In this new
discriminant properties for retention in RPLC [6]. tree (i.e. without logP), steric (nR10) and H-bond-
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Table 2
Molecular descriptors selected by CART. The node numbers refer to Fig. 4a. The surrogate splits are those for the most important primary
variable

Node 1
Primary splits Importance Definition descriptor
Log P,2.469→left 0.5691 Hydrophobicity parameter
Hy,0.2745→right 0.5335 Hydrophilic factor
nHD,1.5→right 0.5074 Number of donor atoms for H-bonds
PW5,0.097→left 0.4701 Path/Walk 5–Randic shape
PCR,4.73→left 0.4684 Ratio of multiple path counts to path counts
TPC,824.5→left 0.4626 Total path count

Surrogate splits Agree Definition descriptor
ATS 1e,1.023→right 0.9157 Broto-Moreau autocorrelation of a topological

structure (ATS)–lag 1/weighted by atomic
Sanderson electronegativities (SEN)

Hy,0.333→right 0.8916 Hydrophilic factor
ATS3e,1.01→right 0.8795 ATS–lag 3/weighted by atomic SEN
ATS6e,1.007→right 0.8795 ATS–lag 6/weighted by atomic SEN
nHA,4.5→right 0.8675 Number of acceptor atoms for H-bonds

Node 2
Primary splits Importance Definition descriptor
Hy,0.636→right 0.2806 Hydrophilic factor
GATS5m,1.762→left 0.2726 Geary autocorrelation (GATS)–lag 5/weighted by

atomic masses
TPCM,16860→left 0.2522 Total multiple path count
PCR,8.762→left 0.2522 Ratio of multiple path counts to path counts
X0Av,0.5675→right 0.2522 Average valence connectivity index chi-0
X1Av,0.297→right 0.2522 Average valence connectivity index chi-1

Surrogate splits Agree Definition descriptor
nHD,2.5→right 0.9355 Number of donor atoms for H-bonds
IVDE,1.88→right 0.8065 Mean information content vertex degree equality
CIC,1.037→left 0.7742 Complementary information content

(neighborhood symmetry)
MATS1e,20.0565→left 0.7742 Moran autocorrelation–lag 1/weighted by atomic

SEN
GATS7m,1.875→left 0.7742 GATS–lag 7/weighted by atomic masses

Node 3
Primary splits Importance Definition descriptor
TPC,633→left 0.5360 Total path count
nR06,2.5→left 0.5043 Number of 6-membered rings
TPCM,3324→left 0.4990 Total multiple path count
PCD,31.35→left 0.4990 Difference of multiple path counts to path counts
MWC05,11.6→left 0.4683 Molecular walk count of order 5
MWC06,4.75→left 0.4683 Molecular walk count of order 6

Surrogate splits Agree Definition descriptor
TPCM,4472→left 0.9615 Total multiple path count
PCD,43.76→left 0.9615 Difference of multiple path counts to path counts
MWC05,11.45→left 0.9423 Molecular walk count of order 5
MWC06,4.25→left 0.9423 Molecular walk count of order 6
MWC07,1.45→left 0.9423 Molecular walk count of order 7
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Table 2. Continued

Node 5
Primary splits Importance Definition descriptor
Log P,5.059→left 0.4166 Hydrophobicity parameter
ATS8m,0.212→left 0.2831 ATS–lag 8/weighted by atomic masses
GGI9,0.0455→left 0.2575 Topological charge index of order 9
JGI9,0.0025→left 0.2575 Mean topological charge index of order 9
GATS2m,1.492→right 0.2532 GATS–lag 2/weighted by atomic masses
ATS5m,0.432→left 0.2532 ATS–lag 5/weighted by atomic masses

Surrogate splits Agree Definition descriptor
GATS5e,1.167→right 0.8214 GATS–lag 5/weighted by atomic SEN
X0AV,0.655→left 0.7857 Average valence connectivity index chi-0
SIC,0.7545→left 0.7857 Structural information content (neighborhood

symmetry)
BIC,0.6835→left 0.7857 Bond information content (neighborhood

symmetry)
PW3,0.3205→right 0.7857 Path/Walk 3–Randic shape

ing properties (nHA) are selected besides the hydro- splitting, one could expect that surrogate variables
philic properties (Hy). Thus analogue properties are usually will represent similar properties. This can,
selected compared to the original tree. The descrip- for instance, clearly be seen for node 3, where
tors selected always are related to the hydrophobic / several molecular complexity descriptors are selected
hydrophilic properties of the molecule, its H-bonding as surrogates for TPC. A second benefit of the
properties and to its molecular /steric complexity. surrogate variables, besides indicating objects with

Besides the primary splits, CART also provides missing values to a node, is the interpretation of
surrogate splits for the most important primary properties described by a descriptor, since some
variable in a node. This is another benefit of CART, molecular descriptors are easier to interpret than
because sometimes it is very likely that missing data others.
occur when dealing with molecular descriptors (e.g. Because CART provides lists of these primary and
experimental descriptors). To appoint, for instance, surrogate splits it is very efficient to evaluate all
molecules with missing logP values in the first split possible variables, which can be related to a certain
to the child nodes, the autocorrelation descriptor property (response variable).
ATS1e is used as surrogate variable. The descriptors
hydrophilicity (Hy), the autocorrelation descriptors 4 .3. Evaluation of the splits in the tree with
(ATS3e and ATS6e) and H-bonding acceptor prop- minimal RMSECV
erties (nHA) also give a classification that is about
90% similar to the one obtained with logP. Log k values from the parent nodes of Fig. 4aw

The surrogate splits for node 2 descriptor Hy, were plotted versus logP (twice), Hy and TPC, i.e.
consist of H-bonding donor properties (nHD), sym- the variables causing the split into child nodes, to
metry characteristics (IVDE and CIC) [45] and have a closer look at the introduced splits during the
autocorrelation descriptors (MATS1e and GATS7m) tree building. The relationships between the selected
[33,34]. The surrogate splits for TPC (node 3) are variables and logk are shown in Fig. 5. The limitw

defined by molecular complexity (TPCM and PCD) values defining the splits are indicated by a vertical
[7,37] and molecular walk counts (MWC05, line. Only the molecules relevant for a specific node
MWC06 and MWC07) [43]. In node 5 the surrogate are plotted. In Fig. 5a, for instance, all 83 molecules
splitters are GATS5e, X0Av, SIC, BIC, PW3, re- are plotted, whereas only 31 molecules are repre-
spectively. sented in Fig. 5b.

Since surrogate variables cause a similar distribu- The descriptor, selected by CART to define the
tion of the objects in the groups obtained after first split (logP), is highly correlated with logkw
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Fig. 5. Logk versus the explanatory variables causing the splits in Fig. 4a, (a) logP, (b) Hy, (c) TPC, (d) logP, (e) log TPC. The verticalw

line represents the limit value to divide into two child nodes.
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(r 5 0.84) (Fig. 5a). The first split divides the data leaf, covering a logk range that does not containw

into two groups, which contain molecules with logP the experimental logk value of the considered testw

values below and above 2.5, respectively. This sample.
corresponds with logk values roughly below and The minimal tree built from the training setsw

above 1.5. The last split (Fig. 5d) is also defined by always contained four leaves. Arbitrarily we divided
log P: values under 5.06 now form the first group the retentions of all 83 molecules equally into five
with log k values below 3.5, while the other group classes, which were called the very low, low, inter-w

contains molecules with logP.5.06 and logk . mediate, high and very high retention classes. Thenw

3.5. As mentioned before, Hy and logP are corre- for a given training/calibration tree a leaf received a
lated in a negative way as can be seen from Fig. 5a label, which was equivalent to one or two of the
and b. The relation between Hy and logk seems to above classes depending on its content. For instance,w

be rather linear (r 5 0.65). The two groups defined if the members of a leaf mainly had retention
by the Hy split show an overlap in logk values. For parameters belonging to the class very low retention,w

the low Hy values the logk range from20.4 to 3, the leaf was labeled ‘‘very low retention’’. If anotherw

while for the high Hy values they are between22 leaf contained mainly substances from the classes
and 1. intermediate and high retention, we gave it the label

Finally, the retention in Fig. 5c is non-linearly ‘‘intermediate or high retention’’. Thus, depending
related to the TPC data. This is something that on the calibration tree considered the labeling of the
should not occur in a classical regression model. The leaves could be somewhat different. The above
log k values range from21 to about 3 for lower approach allowed us, as shown in Table 1, tow

TPC values, whereas they have values between 2 and indicate to which class a given substance was
5 for the high ones. To obtain a more linear relation, predicted to belong, for those situations it was a
the logarithm of TPC (log TPC) was plotted against member of the test set during a cross-validation step.
log k . As can be seen from Fig. 5e the relationship The selected descriptors in the calibration treesw

between log TPC and logk becomes indeed more were analogue to those defining the tree grown on allw

linear. data. Four test sets showed a misclassification rate of
one out of 10 test samples, twice two molecules were

4 .4. Prediction misclassified and for the remaining four test sets
three test samples were misclassified. Relatively high

To evaluate the predictive power of CART, 10- misclassification rates may thus be obtained. Overall,
fold cross-validation was performed. Therefore, ini- for the 10 test sets a misclassification of 20% is
tially the molecules were ranked in ascending order observed. After further examination of the misclassi-
of retention. Then the data were split into uniformly fications, it was concluded that just nine molecules
distributed test /calibration sets (10/73 objects). are more seriously misclassified while the remaining
Trees were grown from the calibration sets, while the 11 molecules are situated just outside the domain of
corresponding test samples were predicted. Since our the correct nodes. Thus 80 out of 100 molecules are
main interest is the prediction of retention classes, classified correctly, 11 are classified just outside the
rather than the exact logk values, the prediction of correct node and only nine are more seriouslyw

the test samples was evaluated in terms of misclassi- misclassified. For instance, the prediction of 2-tri-
fication rate instead of RMSECV. The criterion used fluoromethylphenothiazine turned out to be very bad.
to distinguish between well-classified and misclas- It was predicted to have a (very) low retention,
sified test samples was defined based on the observed whereas the experimental logk value was thew

distributions of the training substances within the highest in the data set (logk 54.804). This largew

four leaves of the minimal trees. The possibility error may be due to the fact that this high retention
exists that high retention values in a distribution value, when occurring in a test set, always is situated
overlap with low retention values of a distribution in outside the domain of the given training set and for
a neighboring leaf. Therefore, a test sample is its prediction one is extrapolating. Thus we may
considered misclassified as CART predicts it in a conclude that extrapolations in CART have to be
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avoided as in other modeling methods. Therefore it charges or the electronic properties in a molecule
is important that the training set covers all possible might be considered, since in most RPLC systems
retention values. one does not work in conditions were the charge or

Another possible explanation for some misclassifi- the dissociation of the drug molecule can be ignored,
cations may be found in the nature of the data. As as was the case for the conditions considered here
mentioned in Section 3, the retention data were (test substances were bases measured at pH 11.7).
obtained using different mobile phase compositions, In summary, we feel that we have demonstrated
with proportions (%, v/v) of methanol–aqueous the potential of the CART methodology as a tool to
buffer ranging from 75:25 to 0:100 [20]. The mea- understand or to select chromatographic methods.
sured logk values were regressed against the volume
fraction of organic modifier in the eluent and the
obtained line was extrapolated to a hypothetical A cknowledgements
capacity factor corresponding to 0% of organic
modifier (100% buffer). Since it is known that the Investigation financed with a grant from the
relationship between logk and the volume fraction Research Council of the Vrije Universiteit Brussel
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tion may introduce considerable errors in the used fellow of the Fund for Scientific Research (FWO),
retention data [46]. Therefore retention values mea- Vlaanderen, Belgium.
sured with only one mobile phase or obtained from
interpolated values [47] might lead to better predic-
tions (less serious misclassifications). R eferences
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